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Abstract 
  MHD free convective flow of a Jeffery fluid between two coaxial inclined  cylinders has been investigated 
by using the quadratic density temperature (Q.D.T) relationship. The inner and outer cylinders are permeable. 
Applying perturbation method the velocity and the temperature fields are obtained. The effects of heat source 
parameter, permeability parameter, Jeffrey parameter and Hartmann number on the velocity and temperature 
distributions are discussed in detail. The magnitude of velocity increases with the increasing permeability parameter 
σ  whereas the magnetic field reduces the velocity in the annulus of two permeable cylinders.  
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Introduction
The flow and heat transfer of electrically 

conducting fluids in channels and circular cylinders 
under the effect of a radial magnetic field occurs in 
magnetohydrodynamic (MHD) generators, pumps, 
accelerators, and flow meters and have applications in 
nuclear reactors, filtration, geothermal systems, and 
others. Free convection is a very important mechanism 
that is operative in a variety of environments from 
cooling electronic circuit boards in computers to causing 
large scale circulation in the atmosphere as well as in 
lakes and oceans that influences the weather. It is caused 
by the action of density gradients in conjunction with 
gravitational field. Free convection flows in tubes and 
channels bounded by permeable walls have been the 
subject of research for many years. Most of the works 
reported are restricted to the case of impermeable wall. 
Soundalgekar [1] have studied free convection effects on 
steady MHD flow past a vertical porous plate. Vajravelu 
and Sastri [2] and Das and Ahamed [3] considered the 
problem of free convective heat transfer in a viscous 
incompressible fluid confined between a vertical wavy 
wall and a flat wall.  Laminar free convection flow with 
and without heat sources through coaxial circular pipes 
has been studied by Gupta et al. [4].  However  in  all 
these  investigations  linear density  temperature  
variation  is  assumed  to  express  the  body force  term  
as buoyancy term. Goren [5] has suggested a quadratic 
density temperature  distribution, given by 

 

                  ( )2

sT Tρ ρβ∆ = − −       (1) 

 where ρ  is the density,β  is the constant and sT  is 

the temperature in hydrostatic condition.         
Such nonlinear relationship between density and 

temperature may be useful to explain the anomalous 
behavior of water at 40c. Balakrishan et al. [6] used this 
density temperature relation to investigate the MHD flow 
between coaxial cylinders.   

Chamkha [7] studied the problem of unsteady, 
two-dimensional, laminar, boundary-layer flow of a 
viscous, incompressible, electrically conducting and 
heat-absorbing fluid along a semi- infinite vertical 
permeable moving plate in the presence of a uniform 
transverse magnetic field and thermal and concentration 
buoyancy effects. Makinde [8] examined the transient 
free convection interaction with thermal radiation of an 
absorbing-emitting fluid along moving vertical 
permeable plate. Tak and Kumar [9] presented MHD free 
convection flow with viscous dissipation in a vertical 
wavy channel.  

Aydin and Avci [10] investigated analytically to 
predict laminar heat convection in a Couette–Poiseuille 
flow between two parallel plates with a simultaneous 
pressure gradient and an axial movement of the upper 
plate. The effect of the modified Brinkman number on 
the temperature distribution and the Nusselt number has 
been discussed for different values of the relative 
velocity of the upper plate. The problem of natural 
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convection from a vertical wavy plate embedded in 
porous media for power law fluids in presence of
magnetic field is studied by Mahdy et al. [11] and mixed 
convection heat and mass transfer on a vertical wavy 
plate embedded in a saturated porous media is analysed 
by Mahdy [12]. Krishna Gopal Singha [13] investigated 
analytical solution to the problem o
convective flow of an electrically conducting fluid 
between two heated parallel plates in the presence of an 
induced magnetic field. Sreenadh et al. [14] obtained a 
solution for the MHD free convective flow of a Jeffrey 
fluid between coaxial cylinders using QDT relation. The 
problem is solved using a perturbation technique. The 
effects of various physical parameters on the flow 
characteristies are  discussed. 
          In this paper, free convective flow of a Jeffrey 
fluid between two inclined coaxial circular cylinders is 
investigated in the presence of a radial magnetic field. 
The inner outer cylinders are is permeable. The velocity, 
the temperature and the Nusselt number are determined 
and results are discussed through graphs. 
 
Formulation of the Problem  

Let us consider the fully developed steady 
laminar free convective flow of a Jeffrey fluid between 
coaxial circular cylinders  with permeable walls in the 
presence of a radial magnetic field (see Fig.1). The radii 
of inner and  outer cylinders are a and b (
respectively. The flow in the porous medium is given by 
Darcy’s law whereas the flow in the annulus is described 
by Jeffrey model. We consider only the axial flow and 
since the pipes are long enough, the flow depends only 
on r, so the velocity vector is of the form (0,0,w(r)). 
 

Fig.1 Physical Model 
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Let us consider the fully developed steady 
laminar free convective flow of a Jeffrey fluid between 
coaxial circular cylinders  with permeable walls in the 
presence of a radial magnetic field (see Fig.1). The radii 

are a and b (� �)  
respectively. The flow in the porous medium is given by 
Darcy’s law whereas the flow in the annulus is described 
by Jeffrey model. We consider only the axial flow and 
since the pipes are long enough, the flow depends only 

locity vector is of the form (0,0,w(r)).  

 

The equations of motion and energy are 
2

2 2
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Where 1g g= −  and Q is a constant, denotes the heat 

added due to heat sources, 1sing
force,  p the pressure,  µ the coefficient of viscosity, 

1λ is the Jeffrey parameter , 

conductivity, eµ  the magnetic permeability, 

magnetic field, 
1K  the coefficient of thermal 

conductivity, δ  is the angle of inclination. 
The boundary conditions are:  

 at r=a, 
0

w

r k

α∂ = −
∂

condition),    
1wT T=                        

 at r=b
0

w
w

r k

α∂ =
∂

(5) 
where α is the slip parameter, �� is the permeability 
Following Ostrach (1952), the body force in (2) can be 
expressed as a buoyancy term. In the hydrostatic 
condition equation (2) gives  

1 sin 0s
s

p
g

z
ρ γ ∂− =

∂
 

    
and hence    

1 1 1 1sin sin sin sin
p p

g g g g
z z

ρ γ ρ γ ρ γ ρ γ∂ ∂− = − + −
∂ ∂

    

                                   

( ) (1 sins sg p p
z

ρ ρ γ ∂= − − −
∂

                                   
1gρβ θ γ= − −

    

where 0 s sp p p and T Tθ= − = −

ISSN: 2277-9655 
Impact Factor: 1.852

International Journal of Engineering Sciences & Research Technology 

The equations of motion and energy are  
2 2 2

0 0
12 2

0 sine H ap w w
w g

z r r r r
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         (3) 

and Q is a constant, denotes the heat 

sinγ  the generating body 

µ the coefficient of viscosity, 

is the Jeffrey parameter , 0σ the electrical 

the magnetic permeability, 0H the 

the coefficient of thermal 

angle of inclination.  

w (Saffman(1971)slip 

                       (4) 

w  2wT T=                                                                           

is the permeability  
Following Ostrach (1952), the body force in (2) can be 
expressed as a buoyancy term. In the hydrostatic 
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s sp p p and T T= − = −
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We introduce the following flow quantities in order to 
make the basic equations and boundary conditions 
dimensionless 

2 2 2 2 2 2 4 3
* * 1 1

1

, , , , ,s s

s

g a g ar K Kw
w W K

a W v K

β θ β ρ θθη θ
θ µ

= = = = =

 (free convection parameter)

2

1 s

a Q

K
β

θ
=

 

(heat source 

parameter)  

 (8)              where sθ  is the average wall temperature .  

 In view of (8), equations (2) – (4) reduce to the 
following non-dimensional form of equations. 
Neglecting asterisks(*),we get  

2
2

21 1
2 2

1 11
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d d K

λ λ θ γ
η η η η
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                        (9) 
22

2
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          (10)

 

Here K can also be expressed as 

1 /r r s pK G P g a cβ θ=  in which 
3 2 2

1 /r sG g aβ θ ν=  

is the Grashoff  number and 

1

p

r

c
P

k

µ
=  is the Prandtl 

number, 0
0eM H a

σµ
µ

=  is the Hartmann number. 

The corresponding boundary conditions are: 

1
1

1
1, ,

dw
at w KN

d
η θ

ασ η
−= = =

                                   (11) 
 

2
2

1
/ , ,
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η θ
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(12) 
where  

21
1 2

sz

s s

Tw TTw T
N and N

θ θ
−−= =  

 
Solution of the Problem  
 For the solution of the equations (9) and (10) we assume  

2 2
0 1 2 ...... ......w Kw K w K w= + + +   

             (13) 

and    
2 2

0 1 2 ...... ......K K Kθ θ θ θ= + + +   

             (14) 
Substituting (13) and (14) into (9) and (10) and equating 

the coefficients of like powers of K , we get  
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( )"
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                         (17) 

( )" 2
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              (18) 
 ….. ….. …...                                                                                                                 
The boundary conditions become  

*

0 0 1 1*
1

1
1, , , 0

dw
at w N

d
η θ θ
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−= = = =

             (19) 
and  

*

0 0 2 1*
2

1
/ , , , 0

dw
at b a w N

d
η θ θ

ασ η
= = = =

             (20) 

The values of 0θ  and 0w  are obtained as  

( ) 2
0 0 0log / 4A Bθ η β η= + −    

             (21) 
and  

1 11 1 2 4 6
0 0 0 0 0 0

M Mw C D E F Gλ λη η η η η+ − += + + − +
2 2

0 0 0[ log ] logH I Jη η η η+ − +
 
 (22) 
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Similar polynomials in η can be obtained for  1θ  and 

1w   

 The heat transfer through the pipe walls to the 
flow per unit area of the pipe surfaces are given by   

( )

1

/ ,1

s

b a

K
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aK η

θ θ
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 ∂=  ∂ 
   

                (23) 
The Nusselt number on the walls are: 

1
1 1

1

s

aq
Nu

K K η

θ
θ η =

 ∂= =  ∂ 
   

      (24) 

and 
2

1 /

1

s b a

aq
Nu

K K η

θ
θ η =

 ∂= =  ∂   
 
Discussion of the Results 
   The numerical values of velocity and 
temperature functions have been computed for 

1 22, 4N N= =  and  0.2
b

a
= .We observe from 

Fig.2 that the  magnitude of velocity increases  with the 
increase in the Hartmann number M.  We observe the 
same phenomenon is observed from Fig.3 but the 
magnitude of velocity becomes higher for the increase in 
the heat source parameter. 

From Fig.4, we conclude that the effect of 
Jeffrey parameter is more nearer to the inner wall of the 
cylinder. The magnitude of velocity decreases with the 

increase in the Jeffrey parameter 1λ . It is also noted 

from Fig.5 that for a given value of 1λ , the magnitude of 

velocity is increasing with the increment in the heat 
source parameter.  

We observe from Fig.6 that the magnitude of 
velocity increases with the increasing permeability 
parameter σ . From Fig.7, we find that positive sign in 
the heat source parameter β gives rise to more velocity 
when compared with negative sign of β.  

We observe from Figs.8 and 9 that the 
magnitude of velocity decreases with the increasing 
inclinationγ .  we also note that  positive sign in the heat 

source parameter β gives rise to more velocity when 
compared with negative sign of β.  

The temperature is numerically evaluated using 
equation (22) for different values of heat source 
parameter β and is shown in Fig.10. It seen that the 
temperature increases with the increasing values of β 
(when β> 0) and decreases with the decreasing values of 
β (when β� 0).  We note that the there is no effect of the 

Jeffrey parameter on the temperature0θ . This is because, 

the temperature 0θ  is independent of 1λ
.
The effect of 

non-Newtonian behavior of the Jeffrey parameter 1λ   on 

the temperature may be seen in the first order 

solution 1θ . 
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We observe from Fig.11 that for given free 
convection parameter K, Nusselt number decreases with 
increasing heat source parameter β at the outer wall when 
the temperature currents flow from inner wall to outer 
wall. In view of Fig.12. we infer that the behavior of 

2Nu is otherwise owing to an increase in β at the inner 

wall . 
The solutions for higher order can be obtained 

using numerical techniques like finite difference method, 
as exact solutions are complex in such cases. 
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